一种用于吸波涂层厚度无损测量的电容传 感器的研制

王春光 冯则坤 龚荣洲 刘昌辉 (华中科技大学电子科学与技术系 武汉 430074)

摘要 根据吸波材料的介电特性,设计制作了一种新的高性能、低成本电容式吸波涂层厚度 无损测量系统。通过采用一种新型电容信号采集框架式集成芯片(Frame-ASIC)CAV424 以 及屏蔽措施和低价位 RISC 微控制器,实现了差分技术和三信号检测技术相结合的方法,系 统可以自动调零、校正并消除大部分误差。在大于 1mm 的范围内精度达到 1µm。由于所选 微控制器带有内置 10 位 A/D 转换和 LCD 驱动, CAV424 输出的差分电压信号能够直接与微 控制器中的 ADC 连接,系统的结构非常简单。

关键词 吸波涂层 电容式传感器 三信号检测技术 电容-电压转换器 框架式集成芯片

A Study of a Capacitive Sensor for Electromagnetic

Absorbing Coat Thickness Measuring

Wang Chunguang Feng Zekun Liu Changhui Gong Rongzhou (Dept. of Electronics Science and Technology, Huazhong University of Science and Technology, WuHan 430074, China)

Abstract A new high-performance, low-cost, capacitance-based thickness measuring system for electromagnetic absorbing coat has been proposed according to the electromagnetic absorber peculiarity. By using a new Capacitance-Voltage Converter Frame-ASIC, CAV424, shielding and a low-cost RISC microcontroller (MCU), three-signal approach associated with difference technology, the system can be automatic balanced and most of the errors are eliminated. The accuracy amounts to 1 µm over a 1mm range. Since A/D converter and LCD driver are embedded in the MCU, the output of the ASIC can directly be connected to a microcontroller and this system is very simple.

Key words Electromagnetic Absorbing Coat Approach Capacitance to Voltage Converter Capacitive Sensor Three-signal Measurement Frame-ASIC

1引言

吸波涂层工艺简单、施工方便、调节容 易及应用面广而成为世界各国隐身研究的 主攻方向。在科研、涂装施工和质量检验过 程中,吸波涂层厚度是一项重要的控制指 标。然而,实验室中通常采用的各种测量方 法,如针刺法、千分尺法、称重法均无法在 实际工程中应用^[1]。目前市面上通用的无损 测厚方法(反射式电涡流法、超声波脉冲回 波法、变磁阻法)和设备都是针对非磁性保 护膜(如非磁性金属镀层、漆膜、氧化膜、 塑胶涂层等)。然而,由于吸波涂层本身往 往具有铁磁性并对电磁波的强烈吸收特性 及其特殊的内部结构特点,使得这三种测厚 仪无论是在测量原理上,还是量程范围上都 满足不了对吸波涂层厚度精确测量的要 求^{[2][3]}。因此,急需研制一种可以精确测量 吸波涂层厚度的设备。

性能优异的电磁波吸收涂层大都采用 铁磁性材料作为吸收剂,这些铁磁性微粒 (粒度约 2~3μm)或微纤维均匀分散在专用 粘结剂中,形成一种均质电磁损耗材料,从 而达到吸收电磁波波的作用。在一般情况 下,各吸收剂颗粒或微纤维在使用前都经表 面改性处理,在吸波涂层中又被粘接剂包 覆,都是彼此绝缘且随机分布的。因此,在 静态或低频状态下,吸波涂层可看作是具有 一定介电常数的均匀电介质。

根据吸波涂层以上性质及其主要涂敷 于铝合金基体上的特点,本文提出了一种精 密的高性能、低成本电容式磁性涂层测量系 统,其特征如下: 2mm 的量程范围; 1μmm 的测量精度; 0.1S 的总测量时间; 电池供电 的便携式系统。

2 系统简介

2.1 基本原理

系统的基本工作原理:在微控制器的控制下,传感器依次测量三个电容值并产生三个能被微控制器(Microcontroller Unit, MCU)直接读出的差分电压信号,再通过

MCU 进行算术运算,消除系统中的共模干扰、寄生电容等的影响,同时实现系统的自动调零和自校正,并计算出涂层厚度,然后将其送到主控计算机或显示设备或某些执行器(见图1)。通过使用充分的屏蔽措施、保护环以及精密 A/D 转换器,系统可取得成本低而精度高的效果。

图 1 系统力

2.2 探头结构

该测厚仪中基本的传感元件采用带有 与测量极板同心的保护圆环结构(如图1)。

探头上的测量电极板与金属基底作为两平 行极板,而被测涂层及空气作为介质构成的 电容为 C_x(见图 2)。探头上的测量电极(E₂) 被一个保护电极包围,在该保护电极的帮助 下,两电极间的电容 C_x可以不受两电极板 的平行地横向移动和边缘效应的影响。在下 面的讨论中,可以看到寄生电容 C_p的影响 也将被消除。

根据 Heerens^[4],由于保护电极大小有限而引起的两极板间电容 C_x的误差小于

$$\delta < e^{-\pi(x/d)} \tag{1}$$

此处, *x* 是保护电极的宽度, *d* 是两电极板 之间的距离。该误差会引起系统的非线性。 因此我们要求 δ 小于 100ppm。另外, 保护 环和所保护电极之间的间隙 s 引起的误差

$$\delta < e^{-\pi(d/s)} \tag{2}$$

当间隙宽度小于两电极板间距的 1/3 时,该 误差比起(1)来可以忽略。

另一个误差源是两电极板间可能存在的细 微斜角(如图3),假设如下条件成立:小电 极与其保护电极之间的电位均为0V;大电 极的电位等于V伏;保护电极足够大。这样, 可将电场看作是同心的。为了使计算简单, 我们假设电极在某一方向是无限大。在这种 情况下,对于非常小的α,小极板上的电荷 可近似^[4]为:

图 3 两极板存在细微斜角 α 显然,我们希望 l 比 d 小,这样误差就只与 角度 α 有关系。在我们的方案中,0.6°角度 的变化而引起的误差小于 100ppm。适当的 选择 $\varepsilon_0 和 l$ 两常数参数,则两极板间的电容 量只与极板间距 d 有关。

3 测量电路的设计

3.1 寄生电容的消除

除了所考虑的传感电容 C_x 之外,在实际系统结构中还存在许多寄生电容。这些寄生电容可以通过图 4 所示的模型来说明。此处的 C_{p1} 代表来自极板 E_1 的寄生电容, C_{p2} 是来自极板 E_2 到保护电极和屏蔽层的寄生电容,寄生 C_{p3} 是来自屏蔽不完全而形成的偏移电容。当传感器电容 C_x 连接到一个 AC电源,电流流经所测电极板, C_{p1} 和 C_{p2} 可被消除。 C_{p3} 可通过完成一次偏移测量来消除。由于 C_{p2} 是由电缆寄生电容和运放的输入寄生电容组成,它甚至比 C_f 还大,所以不能忽略。

3.2 电路系统的构想

系统使用文献^{[5][6]}中的 3 信号测量设 想,其基于的原理如下。当我们采用一个线 性系统测量电容 C_x 时,我们得到一个相应的值

$$M_x = mC_x + M_{off} \tag{4}$$

此处, *m* 是未知增益, M_{off} 是未知的偏移。 通过以理想方法测量参考电容 C_{ref}, 设 m=0 测量偏移量 M_{off},通过下式可以消除参数 *m* 和 M_{off},并得到最后的测量结果 P:

$$P = \frac{M_{ref} - M_{off}}{M_x - M_{off}}$$
(5)

在本文中,传感电容 C_x为:

$$C_x = \frac{\varepsilon A_x}{d_0 + \Delta d} \tag{6}$$

此处, A_x 是电极的有效面积, d_0 是极板间的 初始间距, ε 是介电常数, Δd 是所测位移。 对于参考电极的电容量为:

$$C_{ref} = \frac{\mathcal{E}A_{ref}}{d_{ref}} \tag{7}$$

A_{ref} 是参考平板电容器的有效面积, d_{ref} 为其间距。将(6)(7)式代入(4)中,再代入(5)式中得:

$$P = \frac{A_{ref}(d_0 + \Delta d)}{A_x d_{ref}} = a_1 \frac{\Delta d}{d_{ref}} + a_0 \quad (8)$$

此处, P 是代表厚度的值, 而 a_1 和 a_0 是未知 的常量。通过保持两电容极板面积良好的机 械匹配, 可使 $a_1=A_{ref}/A_x$ 是稳定的常量。当 d_0 和 d_{ref} 为常量时,也可使 $a_0=(A_{ref}d_0) /$ (A_xd_{ref}) 保持常量。通过一次校正就可确定 这两个常数。

3.3 电容到电压信号的转换

测厚仪的测量电路采用德国 Analog Microelectronics GmbH (AMG)公司开发的 框架集成电路 CAV424 来完成电容信号到电 压信号的转换(Capacitance to Voltage Convert, CVC)。CAV424 能够测量出一个 被测电容和参考电容的差值。电压输出级是 一个可达 $V_{max}=\pm 1.4V$ 的差分信号,它可直 接连接在 A/D 转换电路上。测量电路示意图 如下图 5 所示。

图 5 采用框架集成电路(Frame-ASIC)芯片 CAV424 的测量电路示意图

其工作原理^[7]为:一个通过电容 C_{osc} 频 率可调的参考振动器驱动二个构造对称的 积分器并使它们在时间和相位上同步,二个 被控制的积分器的振幅是由外接电容来决 定,这里 C_{refl}、C_{ref2} 作为参考电容而 C_x 作 为被测电容。由于积分器具有很高的共模抑 制比和分辨率,所以比较二个振幅的差值得 到的信号反映出二个积分器的外接电容的 相对变化量。该差值信号通过后级的低通滤 波器整流滤波到达可调增益的差分输出级。 通过外接的微控制器先后控制 C_{ref2} 与 C_x 以 及它们同时与系统的连接。

二个对称构造的内置电容式积分器与 参考振动器的工作原理相似,区别在于电容 式积分器的放电时间是充电时间的一半。其 次,它的放电电压被钳制在一个内置的固定 电压 V_{CLAMP}上。电容式积分器电流 I 由外接 电阻 R 和参考电压 V_M来确定。例如,当微 控制器控制 C_x与系统联通时,对于与 C_x相 连的电容式积分器:

$$I_{cx} = \frac{V_M}{R_{cx}} \tag{9}$$

电容 C_x充电至最大值 V_{cx},理论公式计算如下:

$$V_{cx} = \frac{I_{cx}}{2\Box f_{osc}\Box (C_x + C_{x, par, INT} + C_{x, par, EXT})}$$

 $+V_{CLAMP}$ (10)

其中, C_{x,par,INT} 是与它相关的内部寄生电容,

 Cx,par,EXT
 是与它相关的外接的寄生电容。图

 6 显示出电容 Cx 和 Creft
 的电压信号。

二个电容 C_x和 C_{refl}上的电压相减和参 考电压 V_M一起得出的差分信号如下:

$$V_{cx-ref1} = (V_{cx} - V_{cref}) + V_M$$
(11)

然后差分信号 $V_{CX-refl}$ 通过一个可带放大作 用的二级低通滤波器整流滤波输出(相当于 M_x),送至 MCU 中的寄存器寄存。同样, 可以在微控制器的控制下,测量 $C_{ref2} = C_{ref1}$ 之差带来的差分信号输出 $V_{ref2-refl}$ (相当于 M_{off})以及 $C_x+C_{ref2} = C_{refl}$ 之差带来的差分 信号输出 $V_{cx+ref2-ref1}$ (相当于 M_{ref})。再应用 第 2.2 部分介绍的方法,可将 $C_{x,par,INT}$ 和 $C_{x,par,ext}$ 及其它共模参数消掉。

4 实验过程和结果

4.1 实验过程

差分电压信号的测量很容易使用一个 微控制器来完成。我们实验选用的是一个 Atmel 公司的 Atmega169V 微控制器^[8],它 是一个带 4X25 段 LCD 驱动、8 通道 10 位 精度的 AD 转换器、RISC 结构的 8 位单片 机,它有 1K 字节的 SRAM,32 个通用寄存 器,512 字节的 EEPROM,支持 ISP 编程的 16K 字节的 Flash 存储器,它还提供可编程 1 个 UART (通用异步收发)接口和 1 个主 从 SPI 串行接口作为串行通讯用。

差分电压信号的测量大部分发生在微控制器的硬件部分。因此,可以让微控制器的 CPU 同时去执行其他任务(见图 7)。例如,在测量差分电压信号 V_{ref2-ref1}(M_{off})、V_{cx-ref1}(M_x)及 V_{cx+ref2-ref1}(M_{ref})的同时,可根据(5)式计算出关于 C_{ref}的相对电容值,并且将该结果通过 UART 接口传输给个人电脑。

			time (ms)
0	25	50	75
Measurement of C _x Measurement of C _{ref} Measurement of C _{off}			
Calculation	Communication	Idle	

图 7 测量差分电压信号的同时执行其它任务

4.2 实验结果

传感器对电极的制作公差不敏感。因此,在我们的实验配置中,我们使用简单的印刷电路板 (**PCB**)技术制作电极,其有效面积是直径为 Φ8mm 的圆形极板,保护电极的宽度为10mm,电极板之间的间距随着涂层厚度的不同在 0.1~2mm 之间。由于所选择的系统中,微控制器和电容信号采集 **ASIC** 均可使用 5V 的单电源供电,系统的结构非常简单。当振荡器的工作频率为10KHz 时,整个测量时间可做到仅为100ms。

系统的测试可在软件的控制下自动完成。为了取得规定的测量精度,可让系统每分钟都自动置零一次。通过这种方法,系统的非线性、长时间的稳定性以及结果的可重复性在 1mm 的测量范围内均小于 1µm (见

图 8 位置函数算得的位置误差和非线性的预测

通过对 256 个测量结果取平均值,该系 统的分辨率可达 20aF。由于在积分器的第一 级都会产生 1/f 噪声,不能通过增加测量时 间来进一步提高分辨率。其绝对精度可以通 过位置精度推算出来。由于 1mm 的位移对 应着 50pF 的电容变化量,所以 1µm 的位置 量绝对精度对应着 50aF 的电容量绝对精度。

5 结 论

本文提出了一种低成本、高性能的涂层 厚度测厚仪系统,该系统由一个简单的电容 极板、一个专用集成芯片和一个廉价的微控 制器以及少量的外围器件组成,通过专用集 成芯片实现了线性电容到差分电压信号转 换器。在微控制器的控制下,采用三信号方 法,通过专门算术运算,实现了对吸波涂层 厚度准确测量。这种测量方法对涂层是否存 在铁磁性不敏感。

参考文献

- 1 王智永等.无损检测技术在雷达波吸收材料 研究中的应用.材料工程.1998,9:46-48
- 2 J.西拉德. 超声检测新技术. 北京: 科学出版 社. 1991, 6-10, 45-49
- 3 郁有文等. 传感器原理及工程应用. 西安: 西 安电子科技大学出版社. 2003, 63-79, 88-100, 169-175
- 4 W.C. Heerens, Application of Capacitance Techniques in Sensor Design. Phys.E: Sci. Instrum. 1986, 19: 897-906.
- 5 Xiujun Li and Gerard C.M.Meijer. An Accurate Interface for Capacitive Sensors. IEEE Instrumentation and Measurement. 2002, 10. 51(5): 935-939.
- Ferry N. Toth and Gerard C. M. Meijer. A Low-cost, Smart Capacitive Position Sensor. IEEE Instrumentation and Measurement. 1992, 12. 41(6): 1041-1044
- 7 Converter IC for Capacitive Signals— CAV424. http://www.analogmicro.de/english/products/cav 424.htm.
- 8 ATmega169 (V) Preliminary Summary. http://www.atmel.com/dyn/resources/prod_docu ments/2514S.pdf.